Dominant-negative control of cAMP-dependent IKs upregulation in human long-QT syndrome type 1.
نویسندگان
چکیده
RATIONALE The mutation A341V in the S6 transmembrane segment of KCNQ1, the α-subunit of the slowly activating delayed-rectifier K(+) (I(Ks)) channel, predisposes to a severe long-QT1 syndrome with sympathetic-triggered ventricular tachyarrhythmias and sudden cardiac death. OBJECTIVE Several genetic risk modifiers have been identified in A341V patients, but the molecular mechanisms underlying the pronounced repolarization phenotype, particularly during β-adrenergic receptor stimulation, remain unclear. We aimed to elucidate these mechanisms and provide new insights into control of cAMP-dependent modulation of I(Ks). METHODS AND RESULTS We characterized the effects of A341V on the I(Ks) macromolecular channel complex in transfected Chinese hamster ovary cells and found a dominant-negative suppression of cAMP-dependent Yotiao-mediated I(Ks) upregulation on top of a dominant-negative reduction in basal current. Phosphomimetic substitution of the N-terminal position S27 with aspartic acid rescued this loss of upregulation. Western blot analysis showed reduced phosphorylation of KCNQ1 at S27, even for heterozygous A341V, suggesting that phosphorylation defects in some (mutant) KCNQ1 subunits can completely suppress I(Ks) upregulation. Functional analyses of heterozygous KCNQ1 WT:G589D and heterozygous KCNQ1 WT:S27A, a phosphorylation-inert substitution, also showed such suppression. Immunoprecipitation of Yotiao with KCNQ1-A341V (in the presence of KCNE1) was not different from wild-type. CONCLUSIONS Our results indicate the involvement of the KCNQ1-S6 region at/or around A341 in cAMP-dependent stimulation of I(Ks), a process that is under strong dominant-negative control, suggesting that tetrameric KCNQ1 phosphorylation is required. Specific long-QT1 mutations, including heterozygous A341V, disable this regulation.
منابع مشابه
Molecular Medicine Dominant-Negative Control of cAMP-Dependent IKs Upregulation in Human Long-QT Syndrome Type 1
متن کامل
Long - QT mutation p . K 557 E - Kv 7 . 1 : dominant - negative suppression of I Ks , but preserved cAMP - dependent up - regulation Roel
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Long-QT mutation p.K557E-Kv7.1: dom...
متن کاملA molecular mechanism for adrenergic-induced long QT syndrome.
OBJECTIVES This study sought to explore molecular mechanisms underlying the adrenergic-induced QT prolongation associated with KCNQ1 mutations. BACKGROUND The most frequent type of congenital long QT syndrome is LQT1, which is caused by mutations in the gene (KCNQ1) that encodes the alpha subunit of the slow component of delayed rectifier K(+) current (IKs) channel. We identified 11 patients ...
متن کاملPathophysiological mechanisms of dominant and recessive KVLQT1 K+ channel mutations found in inherited cardiac arrhythmias.
The inherited long QT syndrome (LQTS), characterized by a prolonged QT interval in the electrocardiogram and cardiac arrhythmia, is caused by mutations in at least four different genes, three of which have been identified and encode cardiac ion channels. The most common form of LQTS is due to mutations in the potassium channel gene KVLQT1, but their effects on associated currents are still unkn...
متن کاملSingle-Channel Characteristics of Wild-Type IKs Channels and Channels formed with Two MinK Mutants that Cause Long QT Syndrome
IKs channels are voltage dependent and K+ selective. They influence cardiac action potential duration through their contribution to myocyte repolarization. Assembled from minK and KvLQT1 subunits, IKs channels are notable for a heteromeric ion conduction pathway in which both subunit types contribute to pore formation. This study was undertaken to assess the effects of minK on pore function. We...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 110 2 شماره
صفحات -
تاریخ انتشار 2012